1356

Microbiological Hydroxylation. Part XVI.¹ Incubation of Derivatives (mainly Acetals) of 5a-Androstane Ketones with the Fungi Calonectria decora, Aspergillus ochraceus, and Rhizopus nigricans

By John M. Evans, Sir Ewart R. H. Jones, G. Denis Meakins,* John O. Miners, Anthony Pendlebury, and Alistair L. Wilkins, Dyson Perrins Laboratory, Oxford University, South Parks Road, Oxford OX1 30Y

Acetals and enol ethers derived from oxoandrostanes are less reactive than the parent ketones towards the title fungi. None of the derivatives is hydroxylated by Rhizopus nigricans, and only one by Aspergillus ochraceus. With Calonectria decora the acetals generally give patterns of hydroxylation similar to, but less specific than, those of the corresponding ketones. 16,16-Ethylenedioxy-5a-androstane is exceptional in that its hydroxylation with Calonectria decora to a 6α , 12β -dihydroxy-product is more efficient than the 6α , 11α -dihydroxylation of 5α androstan-16-one.

EARLIER papers in this series describe the hydroxylation of a range of mono- and di-oxygenated 5a-androstanes with Calonectria decora ^{2,3} (Cd), Aspergillus ochraceus ⁴ (Ao), and Rhizopus nigricans 5,6 (Rn). Most of the androstane derivatives were ketones, alcohols, and hydroxy-ketones, and our main object was to examine the variations in the patterns of hydroxylation associated with changes in the positions of the substrates' oxygenated groups. The present work is concerned with the influence on hydroxylation of using simple derivatives (mainly acetals) of the ketones, *i.e.* the effect of modifying the ketone group chemically rather than changing its position in the steroid nucleus.

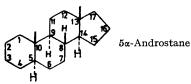
Table 1 summarises the microbiological results obtained

by incubating ketone derivatives with the three fungi. The substrates contain an acetal group, either alone or in conjunction with a second (alcoholic or ketonic) oxygenated group. A few enol ethers and one thioacetal, and 11α -hydroxy- 5α -androstan-3-one (which was not studied in the earlier work) are also included. Table 2 lists the n.m.r. spectra of the steroids, substrates, and products, involved here for which spectroscopic data have not appeared in the earlier publications: the arabic serial number sequence of steroids discussed earlier² is used in this Table which contains steroids nos. 754-789. The structures of new compounds follow, as usual, from a combination of spectrometric and chemical methods.

Part XV, A. M. Bell, Sir Ewart R. H. Jones, G. D. Meakins, J. O. Miners, and A. Pendlebury, *J.C.S. Perkin I*, 1975, 357.
A. M. Bell, P. C. Cherry, I. M. Clark, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, and P. D. Woodgate, *J.C.S. Perkin I*, 1972, 2081.
A. M. Bell, W. A. Denny, Sir Ewart R. H. Jones, G. D. Mea-bins and W. E. Müller, *J.C.S. Perkin I*, 1972, 2750.

kins, and W. E. Müller, J.C.S. Perkin I, 1972, 2759.

⁴ A. M. Bell, J. W. Browne, W. A. Denny, Sir Ewart R. H. Jones, A. Kasal, and G. D. Meakins, J.C.S. Perkin I, 1972, 2930. ⁸ J. W. Browne, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, Y. Morisawa, A. Pendlebury, and J. Pragnell, J.C.S. Perkin I, 1973, 1493.


⁶ V. E. M. Chambers, W. A. Denny, J. M. Evans, Sir Ewart R. H. Jones, A. Kasal, G. D. Meakins, and J. Pragnell, *J.C.S.* Perkin I, 1973, 1500.

For new compounds the n.m.r. signals appear in Table 2, and the other information required for their characterisation is given in Table 3. The microbiological and chemical operations of the present work ⁷ are routine applications of techniques fully described in earlier parts. This being so, and with the new compounds adequately reported in the Tables, the whole Experimental section of an acetal by Ao, the $7\beta,11\alpha$ -dihydroxylation of 17,17-ethylenedioxy-5 α -androstan-3 β -ol, may be due to the ability of this organism to metabolise steroids containing bulky C-17 substituents.⁸

The hydroxylations of the acetals by Cd are usually less specific than those of the parent ketones, but the patterns of substitution are generally similar. Thus,

TABLE 1

Hydroxylation of 5α -androstane derivatives with Calonectria decora (Cd), Aspergillus ochraceus (Ao), and Rhizopus nigricans (Rn)

Substrates are indicated by abbreviated names or symbols, e.g. $3-CO-17,17_O$ represents $17,17$ -ethylenedioxy-5 α -androstan-3-one.
In the 'products' column those oxygen functions introduced during the incubations are in bold type, and n.i. indicates no products
isolated. The entries under conditions refer to the use of ethanol (\tilde{E}) and dimethyl sulphoxide (D) as solvents for the substrate, and
to the time of incubation (in days). The yields are calculated after making allowance for recovered starting material.

			Substrate							
Substrate	Fungus	Conditions	recovered	Main pr	Main product(s)			Other product(s)		
3,3_0]	Cd	D4	37%	6 α, 12 β-	(OH),	27%	12 β, 15 0	-(OH),	14%	
-0-	Ao, Rn	D4	>90	n.i.	· ··-	,-	• ·	· /-	,	
3,3-8]	Cd, Ao, Rn	D4	> 90	n.i.						
$16, 16_{-0}^{-0}$	Cd	D4	29	6 α, 12 β-	(OH) ₂	71	6-CO-12β-	OH	5	
-0-	Ao, Rn	$\mathbf{D4}$	> 90	n.i.			•			
17,17 <u>°</u>]	Cd	$\mathbf{D4}$	53	7β,12β,15o	-(OH) ₃	47	7 β, 12 β-	(OH) ₂	6	
Ū.				1 β, 7 β, 12 β-	(OH) ₃	21				
	Rn	D4	> 90	n.i.						
3-CO-17,17 <u>-</u> 0]	Cd	$\mathbf{D4}$	12	12 β, 15 α	-(OH)2	25				
17-CO-3,3-0]	Cd	$\mathbf{D4}$	2	1 β, 6 α-	(OH)2	22	7 β, 12 β, 15 α-	-(OH) ₃	6	
				12 β, 15 α	-(OH) ₂	11	3-CO-12β,15α-	-(OH) ₂	5	
							6 α, 11 α-	$(OH)_2$	5	
	1 - D.	71	> 00				1 β, 15 α	$-(OH)_2$	2	
	Ao, Rn	D4	>90	n.i.	(010)		No. 1.00		10	
3,3:17,17(-0)	Cd	D4	10	12 β, 15 α	$-(OH)_2$	25	7 β, 12 β-	(OH) ₂	13	
	Ao, Rn	D4	>90	n.i.			100.15	(017) 18 00	-	
3α,OH-17,17 <u>-</u> 0]	Cd	D4	8	12 β, 15 α		37		-(OH) ₂ -17-CO	7	
00 OII 15 15-0-	<u></u>	D 4	0		-(OH) ₂ -17-0		1 β, 6 α-	(OH) ₂ -17-CO	4	
3β-OH-17,17 <u>-</u> 0]	Cd	D4	0	12β,15α		29		-(OH) ₂ -17-CO .	6	
	Ao	D4	0	3-CO- 12 β, 15 α 7β, 11 α-	$(OH)_2$ (OH).	10		$(OH)_{2}$ -3,17-(CO) ₂	3 6	
	AU	D4	0	$1\beta, 11\alpha$ -	$(OH)_2$ (OH),	$34\\16$	11 α-	OH	U	
11α-OH-3-CO	Cd	D4	4	12β,15α		24				
11α -OH-3,3 $^{-0}_{-0}$]	Cđ	D4	20	12 ^β ,15 ^α		28	6 α-	OH	11	
110 011 0;0-01	04	2.		6 α, 12 β-	$(OH)_2$	18	04	011		
	Ao, Rn	$\mathbf{D4}$	>90	n.i.	(011)2	10				
3-OMe– Δ^2	Ċd	E 4	0	3-CO		35	3-CO-12β,15α-	·(OH),	6	
							3β, 12 β, 15 α	-(OH) ₃	5	
$3-OMe-\Delta^{3,5}$	Cd, Ao, Rn	D4	>90	n.i.						
$3-OMe-17-CO-\Delta^{3,5}$	Cđ	D4	0		$-(OH)_2 - \Delta^4$	29	$3-CO-\Delta^4$	011	5	
				3-CO- 6 β- 3-CO- 15 α	(OH–Δ ⁴ - OH–Δ ⁴	9 9	3, 6 -(CO) ₂ - 15 α	-OH	7	
	Rn	D4	>90	n.i.	- On-Δ*	9				
	1170	21	/	11.1.						

has been deposited as Supplementary Publication No. SUP 21363 (12 pp., 1 microfiche).*

Acetals are generally less reactive than the corresponding ketones towards Ao and Rn. For example, the 3,17diketone is hydroxylated at position 11 by Ao^4 and at positions 7 and 11 by Rn,³ but neither fungus attacks the corresponding diacetal. The only appreciable conversion

while the 3-ketone gives clean 12β , 15α -dihydroxylation,² the acetal forms both 12β , 15α - and 6α , 12β -dihydroxyderivatives, the latter being the major product. A notable feature of the incubation of 3,3-ethylenedioxy- 5α -androstan- 11α -ol and 11α -hydroxy- 5α -androstan-3one is the formation of 12β -hydroxylated products; such

* For details of Supplementary Publications see Notice to Authors No. 7 in J.C.S. Perkin I, 1974, Index issue. ⁷ A. detailed account is given by A. Pendlebury, D.Phil. Thesis, Oxford, 1972.

⁸ A. S. Clegg, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, and J. T. Pinhey, J.C.S. Perkin I, 1973, 2137.

TABLE 2

N.m.r. signals

The results, presented in the form used earlier, " were obtained by examining solutions in CDCl₃ at 100 MHz

55	channing solutions in e		3 at 1		112		
No.	Compound		$ au_2$	τ_2 (calc)		-CH-0	R etc.
754	3,3-Ethylenedithio-5α-	19	9.20	9.20			
755	androstane 16,16-Ethylenedioxy-5α-	$\frac{18}{19}$	$9.32 \\ 9.22$	$9.31 \\ 9.22$			
	androstane	18	9·10	9.10			
756	17,17-Ethylenedioxy-5α-	19	8.98	8.98			
757	androstan-3-one 3,3-Ethylenedioxy-5α-	$\frac{18}{19}$	9·14 9·17	9·14 9·17			
	androstan-17-one	18	9.15	9.15			
758	5α-Androstane-1,7,12-trione	$\frac{19}{18}$	8·49 8·99	8·47 8·96			
759	5α-Androstane-6,12,16-trione	19	9.12	9.14			
780		18	8.78	8.80	11.0	5 50	3 (7)
760	3-Methoxy-5α-androst-2-ene	$\frac{19}{18}$	9·24 9·30	9·26 9·30	H-2 OMe	5•50 6•50	d (5) S
761	3-Methoxyandrosta-3,5-diene	19	9.05	9.06	H-4	4.98	s
		18	9.25	9.27	H-6 OMe	4·89 6·46	m (5) s
762	3-Methoxyandrosta-3,5-dien-	19	9.03	9.04	H-4	4.97	s
	17-one	18	9·13	9.11	H-6 OMe	4·86 6·46	m (5)
763	17,17-Ethylenedioxy-5α-	19	9.22	9.22	H-3	6.00	s m (7)
704	androstan-3α-ol	18	9.18	9.16	Acetal	6.16	S
764	$17,17$ -Ethylenedioxy- 5α - androstan- 3β -ol	19	9.18	9.19	H-3	6.38	7 (10, 10, 5, 5)
		18	9.16	9.16	Acetal	6 ·10	S
765	3,3-Ethylenedioxy-5α- androstan-11α-ol	$\frac{19}{18}$	$9.15 \\ 9.28$	$9.17 \\ 9.29$	H-11 Acetal	$6.02 \\ 6.10$	6 (10, 10, 5)
766	12β -Hydroxy- 5α -androstane-	1 9	9.22	9.21	H-12	6.26	4 (10, 5)
767	6,16-dione	$\frac{18}{19}$	9.07	9·10	11 15	5.59	a (8)
767	15α-Hydroxy-5α-androstane- 3,17-dione	18	8·94 9·07	8∙95 9∙07	H-15	5.58	q (8)
768	15α-Hydroxy-5α-androst-1-	19	8.95	8.96	H-1	4.14	d (10)
	ene-3,17-dione	18	9.06	9.07	H-2 H-15	$2.89 \\ 5.58$	d (10) q (8)
769	16α -Hydroxy- 5α -androstane-	19	9.00	9.00	H-15	5.75	q (8)
770	3,6,17-trione	18	9.06	9.05	OM ₂	6.90	
770	3,3-Dimethoxy-5α-androstane	$\frac{19}{18}$	$9.21 \\ 9.32$	9·22 9·30	OMe OMe	6·80 6·86	s s
771	6α,11α-Diacetoxy-3,3-	19	9.00	9.04	H-6	5.34	6 (10, 10, 5)
	ethylenedioxy-5α- androstane	18	9.24	9.25	H-11 Acetal	4·84 6·05	6 (10, 10, 5) s
772	6α,12β-Dihydroxy-5α-	19	9.15	9.14	H-6	6.55	6 (10, 10, 5)
773	androstan-16-one	18 19	$9.11 \\ 9.13$	9·09 9·09	H-12 H-1)	6.35	4 (10, 5)
110	3,3-Ethylenedioxy-1β,6α- dihydroxy-5α-androstan-	10	9.19	3.03	H-6 }	6∙4 0	m (20)
	17-one	18	9.14	9.15	Acetal	6.06	S
774	3,3-Ethylenedioxy-1β,15α- dihydroxy-5α-androstan-	19	9.13	9.11	H-1 H-15	$6.42 \\ 5.56$	4 (10, 5) q (8)
	17-one	18	9.13	9.12	Acetal	6.04	s
775	3,3-Ethylenedioxy-6α,11α- dihydroxy-5α-androstan-	19	9.01	9.02	H-6 H-11)	6.58	
	17-one	18	9.12	9.12	Acetal	6.05	m (10)
776	6α,11α-Diacetoxy-3,3-	19	8.99	9.01	H-6	5.31	6 (10, 10, 5) 6 (10, 10, 5)
	ethylenedioxy-5α- androstan-17-one	18	9.08	9.08	H-11 Acetal	4·83 6·04	6 (10, 10, 5) s
777	6β,15α-Dihydroxyandrost-4-	19	8.58	8.55	H-4	4.20	S
	ene-3,17-dione	18	9.03	9.02	$\left. \begin{array}{c} H-6\\ H-15 \end{array} \right\}$	5.57	m (22)
778	7β,12β-Dihydroxy-5α-	19	8.92	8.92	H-7	6.53	6 (12, 12, 5)
779	androstane-3,17-dione 17,17-Ethylenedioxy-12β,15α-	18 19	9·02 8·96	8·99 8·96	H-12 H-12)	6.23	4 (12, 5)
110	dihydroxy-5a-androstan-	10	0.00	0.00	H-15	5.95	m (20)
7 00	3-one	18	9·04 9·14	9.02	Acetal	6.17	4 (11 5)
780	3,3-Ethylenedioxy-12β,15α- dihydroxy-5α-androstan-	19	9.14	9.14	H-12 H-15	5.55	4 (11, 5) m (15)
	17-one	18	9.04	9.04	Acetal	6.06	s
781	1β,7β,12β-Trihydroxy-5α- androstan-17-one	19	9.04	9.06	$\left[\begin{array}{c} H-1\\ H-7\end{array}\right]$	6·42	m (25)
		18	9.11	9.08	H-12		
782	3α,12β,15α-Trihydroxy-5α- androstan-17-one	19	9.18	9.18	H-3 H-12	$5.94 \\ 6.15$	m (7) 4 (11, 5)
		18	9.04	9.02	H-15	5.52	q (8)
783	17,17-Ethylenedioxy-5α- androstane-3α,12β,15α-triol	19	9.20	9.19	H-3 H-12		
	androstane-52,129,152-1101				H-15 }	5.98	m (25)
70 4	17.17 Eth-day - Harry F	18	9.08	9.11	Acetal		
784	17,17-Ethylenedioxy-5α- androstane-3β,12β,15α-triol	19	9.17	9.16	H-3 H-12	• • • •	(0.1)
		• •			H-15	6.00	m (24)
785	6α,11α,12β,Triacetoxy-3,3-	18 19	9·08 9·06	9·11 9·04	Acetal H-6	5.19	6 (10, 10, 5)
100	ethylenedioxy-5α-		0.00	0 0 ±	H-11	5.00	t (9)
700	androstane	18	9.17	9.18	H-12 H-11	5.31	t (9) d (9) t (9)
786	11α,12β,15α-Trihydroxy-5α- androstan-3-one	19	8·86	8.86	H-11 H-12	6∙33 6∙75	d (9)
		18	9.20	9.21	H-15	5.82	d (9) 6 (9, 9, 3)
787	11α,12β,15α-Triacetoxy-3,3- ethylenedioxy-5α-	19	9.04	9.07	H-11 H-12	$4.73 \\ 5.15$	t (10) d (10)
	androstane	18	9.12	9.11	H-15	5.01	6 (10, 10, 4)
788	7β,12β,15α-Trihydroxy-5α-	19	8.90	8.91	Acetal H-7	6·06 6·45	s m (23)
100	androstane-3,17-dione				H-12	6.16	4(11, 5)
789	3 3-Ethylepediovy-78 198 15-	$\frac{18}{19}$	8∙98 9•13	$8.96 \\ 9.12$	H-15 H-7	5·48 6·47	q (8)
103	3,3-Ethylenedioxy-7β,12β,15α- trihydroxy-5α-androstan-				H-12	6.22	m (21) 4 (10, 5)
	17-one	18	9.03	9.01	H-15	$5 \cdot 22$	q (8)
		a Re	f. 2.		Acetal	6.06	s

hydroxylation, at a position adjacent to a hydroxy-function in the substrate, is an uncommon microbiological process. Dihydroxylations of the 16-oxygenated substrates (6α , 11α - with the ketone and 6α , 12β - with the acetal) provide an interesting variation in having one

TABLE 3

Characterisation of new compounds

Chara	cterisation of	new c	ompounds		
	M.p. (°C)	[α]D (°)	Analys	ses (%)	
Compound	(cryst. solvent)	$\begin{bmatrix} \alpha \end{bmatrix} \mathbf{D} (^{\circ}) \\ (c) *$		с	н
5α-Androstane-1,7,12-	250-251 (M-OII)	+62	Found	75.5	8.6
trione 5α-Androstane-6,12,16-	(MeOH) 242—244	(0.2) -51	C ₁₉ H ₂₆ O ₃ req. Found	75·5 75·3	8·7 8·6
trione	(MeOH)	(0.7)	C ₁₉ H ₂₆ O ₃ req.	75.5	8.7
3-Methoxy-5α-androst-2-	80-81	+57	Found	83.5	11.0
ene 2 "Ethylopodiowy 5.	(MeOH-C ₅ H ₅ N) 156-157.5	(1.0)	$C_{20}H_{32}O$ req.	83.3	11.2
3,3-Ethylenedioxy-5α- androstan-11α-ol	(Me ₂ CO-hexane)	(0.3)	Found C ₂₁ H ₃₄ O ₃ req.	75∙3 75•4	$10.3 \\ 10.25$
6α-Hydroxy-5α-androst-	203-205	+143	Found	75-5	8.8
1-ene-3,17-dione	(Me ₂ CO-hexane)	(1.0)	$C_{19}H_{26}O_{3}$ req.	75.5	8.7
12β-Hydroxy-5α-	187—189	-174	Found	75.0	9.4
androstane-6,16-dione 15α-Hydroxy-5α-	(Me ₂ CO-hexane) 171-172	$^{(0\cdot 2)}_{+115}$	C ₁₉ H ₂₈ O ₃ req. Found	74-9 74-7	9-3 9-2
androstane-3,17-dione	(EtOAc-hexane)	(0.9)	C ₁₉ H ₂₈ O ₃ req.	74.9	9.3
15α-Hydroxy-5α-androst-	213-215	+159	Found	$75 \cdot 4$	8.5
1-ene-3,17-dione	(Me ₂ CO-hexane)	(0.9)	$C_{19}H_{26}O_3$ req.	75.5	8.7
15α-Hydroxy-5α- androstane-3,6,17-	224—226 (EtOAc-hexane)	+103 (1.0)	Found $C_{19}H_{26}O_4$ req.	$71.8 \\ 71.7$	$\frac{8 \cdot 35}{8 \cdot 2}$
trione	(Diorio headile)	(1 0)	019112604 104.		02
3,3-Ethylenedioxy-5α-	185-188	+14	Found	72.1	9.6
and rost an e-6 α , 12 β -	(Me ₂ CO-hexane)	(0.9)	C ₂₁ H ₃₄ O ₄ req.	72.0	9.7
diol 6α,12β-Dihydroxy-5α-	214-216	-136	Found	74.4	10.0
androstan-16-one	(MeOH)	(0.9)	$C_{19}H_{30}O_3$ req.	74.5	9.9
6α,11α-Diacetoxy-3,3-	173 - 175	-22	Found	69.3	8.9
ethylenedioxy-5a-	(Me ₂ CO-hexane)	(0.15)	C ₂₅ H ₃₈ O ₆ req.	69.1	8.75
androstane 7β,12β-Dihydroxy-5α-	178-179	(100	Found	74.4	9.8
androstan-17-one	Me ₂ CO-hexane)	+100 (1·0)	C ₁₉ H ₃₀ O ₃ req.	74.4	9.9
3,3-Ethylenedioxy-5α-	193—195	+32	Found	72.3	9.7
and rost an $e-12\beta$, 15α -	(Me ₂ CO-hexane)	(1.0)	C ₂₁ H ₃₄ O ₄ req.	72.0	9.8
diol	925 927	1.014	Found	20.2	9.0
3,3-Ethylenedioxy-1β,6α- dihydroxy-5α-	235—237 (Me ₂ CO–hexane)	(0·8)	Found C ₂₁ H ₃₂ O ₅ req.	69·3 69·2	8·6 8·85
androstan-17-one	(megoo mexane)	(0 0)	C21113205 1Cq.	00 2	0.00
3,3-Ethylenedioxy-	219 - 221		Found	69.4	8.7
1β,15α-dihydroxy-5α-	(Me ₂ COhexane)	(0.15)	C ₂₁ H ₃₂ O ₅ req.	69.2	8.85
androstan-17-one 3,3-Ethylenedioxy-	260-262	1.62 4	Found	69 ·1	8.9
6a,11a-dihydroxy-5a	(Me ₂ CO-hexane)	(0.4)	: Found C₂1H₃2O₅ req.	69.2	8.85
androstan-17-one	(integete includie)	(0 -)	03111330 9 104.		0.00
6α,11α-Diacetoxy-3,3-	232-234	+51	Found	66.8	8.0
ethylenedioxy-5α-	(Me ₂ CO-hexane)	(0•2)	C25H36O7 req.	66-9	8.1
androstan-17-one 6β,15α-Dihydroxy-	203-205	+30	Found	71.6	8.4
androst-4-ene-3,17-	(Me ₂ CO-hexane)	(0.8)	C19H26O4 req.	71.7	8.2
dione		• •			
7β,12β-Dihydroxy-5α-	233-235	+109	Found	71.5	8.8
androstane-3,17- dione	(Me ₂ CO-hexane)	(1.05)	$C_{19}H_{28}O_4$ req.	71.2	8.8
17,17-Ethylenedioxy-	203 - 205	+30	Found	69-4	8.9
12β,15α-dihydroxy-	(Me ₂ CO-hexane)	(0.8)	C21H32O5 req.	69.2	8.85
5α-androstan-3-one	010 000		D 1		0.79
3,3-Ethylenedioxy- 12β,15α-dihydroxy-5α-	218-220 (Me ₂ CO-hexane)		Found	$69.2 \\ 69.2$	$8.73 \\ 8.85$
androstan-17-one	(megeo-nexane)	(1.0)	$C_{21}H_{82}O_5$ req.	00 2	0.00
5α-Androstane-	229-230	+66 +	Found	74.0	10.55
7β,12β,15α-triol	(Me ₂ CO) 157—158	(0.15)	$C_{19}H_{32}O_3$ req.	74.0	10.5
7β,15α-Isopropylidene- dioxy-5α-androstan-	(hexane)	+14 (0·3)	Found C ₂₂ H ₃₆ O ₃ req.	76·1 75·8	$10.5 \\ 10.4$
12β -ol	(nexane)	(0.0)	C221136O3 104.	10.0	10.4
1β,7β,12β-Trihydroxy-	235 - 238	$+99^{+}$	Found	70.7	9.15
5α -androstan-17-one	(Me ₂ CO-hexane)	(0.1)	$C_{19}H_{30}O_4$ req. Found	70.8	9.4
3α,12β,15α-Trihydroxy- 5α-androstan-17-one	223-225 (Me ₂ CO-hexane)	+891 (0·6)	C H O rec	71·0 70·8	9·2 9·4
17,17-Ethylenedioxy-5α-	184—186	+25 †	$C_{19}H_{30}O_4$ req. Found	68.5	9.25
androstane-3a,12B,15a-	(Me ₂ CO-hexane)	(1.0)	C21H84O5 req.	68.8	9.35
triol			R 1	00.1	
17,17-Ethylenedioxy- 5α-androstane-	232-234 (Me ₂ CO-hexane)	$+73^{+}$	Found	69·1 68·8	$9.5 \\ 9.35$
$3\beta, 12\beta, 15\alpha$ -triol	(megeo-nexane)	(0.7)	$C_{21}H_{84}O_{5}$ req.	00.0	0.00
6α,11α,12β-Triacetoxy-	168-170	+17	Found	65.8	8.3
3,3-ethylenedioxy-5a-	(Me _s CO-hexane)	(0.1)	C ₂₇ H ₆₀ O ₈ req.	65.8	$8 \cdot 2$
androstane	175-176	1167	Found	7.08	9.7
7β,12β,15α-Trihydroxy- 5α-androstan-17-one	175176 (Me ₂ CO-hexane)	$^{+167}_{(0.7)}$	Found C ₁₉ H ₃₀ O ₄ req.	70.8	9.5
11α,12β,15α-Trihydroxy-	110 - 112	+38	Found	71.0	9.5
5α-androstan-3-one	(Me _s CO-hexane)	(0.5)	C19H30O4 req.	70.8	9.4
11α,12β,15α-Triacetoxy-	203-204 (Ma CO-barana)	+30	Found	65-9 65-8	$\frac{8 \cdot 1}{8 \cdot 2}$
3,3-ethylenedioxy-5α- androstane	(Me ₂ CO-hexane)	(0•4)	C ₂₇ H ₄₀ O ₈ req.	00.0	0.4
7β,12β,15α-Trihydroxy-	246 - 248		Found	67.7	8.4
5α-androstane-3,17-	(Me ₂ CO–hexane)	(0.1)	$C_{19}H_{28}O_5$ req.	67.85	8.3
dione 3,3-Ethylenedioxy-	194-196	1 08 4	Found	66-2	8.4
7β,12β,15α-trihydroxy-	(Me_2CO)	(0.4)	$C_{21}H_{32}O_{6}$ req.	66.3	8.5
5α-androstan-17-one	· · · /	· /			-
+ T 07701 1				1*	

* In CHCl_a unless otherwise indicated. † In EtOH. ‡ In dioxan.

common and one different point of attack. With the 17-oxygenated androstanes however the parallel between acetal and ketone disappears: the acetal is converted into the 7 β ,12 β -disubstituted derivative * which is then further hydroxylated at the 1 β - or 15 α -position, whereas the ketone undergoes 1 β ,6 α -dihydroxylation.² (The behaviour of the 17-acetal resembles that of the 3 β -hydroxy-5 α -pregnan-20-one which also gives a 7 β ,12 β ,-15 α -trihydroxy-product, albeit in low yield.¹⁰)

The thioacetal was not utilised by any of the fungi, and the enol ethers were recovered unchanged from incubations with Ao and Rn. Two cases (Table 1) in which enol ethers were attacked by Cd were investigated by varying the incubation times and the composition of the medium,² and by carrying out blank experiments with the substrates and media alone. It transpired that the This investigation suggests that chemical modification of a steroidal substrate's ketone group is generally unprofitable in microbiological work. However, a notable exception is provided by the 16-oxygenated substrates, since the ketone and the acetal are both efficiently hydroxylated by Cd, but give dihydroxylated products of different types: conversion of the ketone into the acetal before hydroxylation thus leads to a convenient preparation of the uncommon 6,12,16-trioxygenated substrates.

We thank the S.R.C. for a studentship (to A. P.), Magdalen College, Oxford, for a Perkin Research Studentship (to A. L. W.), and Glaxo Research Ltd., for grants and a gift of chemicals.

[4/2708 Received, 30th December, 1974]

⁹ A. D. Boul, J. W. Blunt, J. W. Browne, V. Kumar, G. D. Meakins, J. T. Pinhey, and V. E. M. Thomas, *J. Chem. Soc.* (C), 1971, 1130.

¹⁰ A. S. Clegg, D.Phil. Thesis, Oxford, 1970.

^{*} The importance of i.r. studies in establishing the structures of 7β , 12β -dihydroxy- 5α -androstan-17-one (no. 288) and 7β , 12β , 15α -trihydroxy- 5α -androstan-17-one (no. 337) was discussed earlier;⁹ the presence of a hydrogen bonded 7β , 15α -dihydroxy-system in the latter was confirmed by preparing the 7, 15-acetonide from the derived 7β , 12β , 15α -triol (no. 330).